Let →a and →b be two unit vectors such that →a⋅→b=0. For some x,y∈R, let →c=x→a+y→b+(→a×→b). If |→c|=2 and the vector →c is inclined at the same angle α to both →a and →b, then the value of 8cos2α is .
Open in App
Solution
→c=x→a+y→b+(→a×→b) →c⋅→a=x⇒|→c||→a|cosα=x⇒x=2cosα.............(i) →c⋅→b=y⇒|→c||→b|cosα=y⇒y=2cosα.............(ii) ∴x=y=2cosα We know |→a×→b|=1 →c⋅→c=x2+y2+12⇒4=x2+y2+1 ⇒x2+y2=3 [∵|→c|=2] Using equation (i) and (ii), 8cos2α=3