Let →a=^i−^j+^k,→b=3^i−4^j+5^k. If →r×→a=→r×→b and →r⋅(2^i+4^j+^k)=−4, then the value of →r⋅(^i+^j+^k)=
Open in App
Solution
Given :→a=^i−^j+^k,→b=3^i−4^j+5^k.
and →r×→a=→r×→b ⇒→r×(→a−→b)=0
So, →r is parallel to vector (→a−→b) ⇒→r=λ(→a−→b)=λ(−2^i+3^j−4^k)
also, →r⋅(2^i+4^j+^k)=−4 ⇒λ(−4+12−4)=−4⇒λ=−1⇒→r=2^i−3^j+4^k ∴→r⋅(^i+^j+^k)=3