Let →a=^i+^j+^k,→b and →c=^j−^k be three vectors such that →a×→b=→c and →a⋅→b=1. If the length of projection vector of the vector→b on the vector →a×→c is l, then the value of 3l2 is equal to
Open in App
Solution
Given: →a×→b=→c ⇒(→a×→b)⋅→c=|→c|2=2
Also, →a×→c=∣∣
∣
∣∣^i^j^k11101−1∣∣
∣
∣∣=−2^i+^j+^k⇒|→a×→c|=√6
Now required length of projection l=∣∣
∣∣→b⋅(→a×→c)|→a×→c|∣∣
∣∣=2√6
Hence, 3l2=2