wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let a=^j^k;c=^i^j^k. Then the vector b satisfying a×b+c=0 and a.b=3 is

A
2^i^j+2^k
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
^i^j2^k
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
^i+^j2^k
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
^i+^j2^k
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is D ^i+^j2^k
Given a=^j^k
c=^i^j^k
let b=b1^i+b2^j+b3^k
a.b=3
(^j^k).(b1^i+b2^j+b3^k)=3
b2b3=3 __ (1)
a×b= ∣ ∣ ∣^i^j^k011b1b2b3∣ ∣ ∣
=^i(b3+b2)^j(b1)+^k(b1)
a×b=(b3+b2)^ib1^jb1^k
c+a×b=0
c+(b3+b2)^ib1^jb1^k=0
^i^j^k=(b3+b2)^i+b1^j+b1^k
Equating
b1=1,
b3+b2=1 __ (ii)
b2b3=3 __ (i)
________________
2b2=2b2=1
b3=2
Hence, b=^i+^j2^k


1072493_1183516_ans_29cf3b12e9a148c6b2e284b92a5e0853.png

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Dot Product
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon