Given, |→a|=|→b|=|→c|=1
(→a×→b)+(→b×→c)=p→a+q→b+r→c
Taking dot product with →a, we get
→a⋅(→a×→b)+→a⋅(→b×→c)=p+q(→a⋅→b)+r(→a⋅→c)
⇒0+[→a →b →c]=p+q2+r2 ⇒2p+q+r=2[→a →b →c] ⋯(1)
Taking dot product with →b, we get
0=p2+q+r2
⇒p+2q+r=0 ⋯(2)
Taking dot product with →c, we get
[→a →b →c]+0=p2+q2+r ⇒p+q+2r=2[→a →b →c] ⋯(3)
From (1),(2) and (3), we get
p=−q=r
Thus, p2+2q2+r2q2=p2+2p2+p2p2=4