Given, →d=sinx(→a×→b)+cosy(→b×→c)+2(→c×→a)
⇒→d⋅→a=cosy[→a →b →c]=−→d⋅(→b+→c)
(∵→d⋅(→a+→b+→c)=0)
⇒cosy=−→d⋅(→b+→c)[→a →b →c] ⋯(1)
Similarly, sinx=−→d⋅(→b+→a)[→a →b →c] ⋯(2)
and 2=−→d⋅(→c+→a)[→a →b →c] ⋯(3)
Adding equation (1),(2) and (3), we get
sinx+cosy+2=0
⇒sinx+cosy=−2
which is possible, only when
sinx=−1 and cosy=−1
⇒x=(4n−1)π2 and y=(2n+1)π
Since we want minimum value of x2+y2,
so x=−π2 and y=π
⇒x2+y2=5π24
∴λ=5