Let →a,→b and →c be three non -zero vectors such that no two of these are collinear. If the vector →a+2→b is collinear with →c and →b+3→c is collinear with →a (λ being some non -zero scalar) then →a+2→b+6→c equals
This question is about the collinearity of vectors. As we learnt one very useful way of expressing that two vectors are collinear is by stating that one of those vectors can be equated to a scalar multiple of the second vector.
In the question we are given that a+2b is collinear to c.. So expressing the first vector as a scalar multiple of the second we can write as,