→a×(→b×→c)=(→a×→b)×→c
⇒ (→a⋅→c)→b−(→a.→b)→c=(→a⋅→c)→b−(→b⋅→c)→a
⇒(→a⋅→b)→c=(→b⋅→c)→a
⇒ →a⋅→b=→b⋅→c=0 (∵→a,→c are not collinear)
Now, ∣∣∣→a+→b+→c∣∣∣2=∣∣→a∣∣2+∣∣∣→b∣∣∣2+∣∣→c∣∣2+2(→a⋅→b+→b⋅→c+→c⋅→a==3+2(0+0+12) (∵|→a|=|→b|=|→c|=1)
=4
∴∣∣∣→a+→b+→c∣∣∣=√4=2