Given :
(→a+2→b)⋅→c=0⇒→a⋅→c+2→b⋅→c=0⋯(i),
(→b+2→c)⋅→a=0⇒→a⋅→b+2→a⋅→c=0⋯(ii)
and
(→c+2→a)⋅→b=0⇒→b⋅→c+2→a⋅→b=0⋯(iii)
Adding (i),(ii) and (iii): we get,
3(→a⋅→b+→b⋅→c+→a⋅→c)=0⇒(→a⋅→b+→b⋅→c+→a⋅→c=0)⋯(A)
Also,
|→a+→b+→c|2=|→a|2+|→b|2+|→c|2+2(→a⋅→b+→b⋅→c+→a⋅→c)=1+36+12 [using (A)][∵|→a|=1,|→b|=6,|→c|=2√3]=49⇒|→a+→b+→c|=7