Let →a,→b,→c be non coplanar vectors. If →p=→b×→a[→a→b→c],→q=→c×→a[→a→b→c],→r=→a×→b[→a→b→c] then (→a+→b).→p+(→b+→c).→q+(→c+→a).→r=
A
0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
3
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is D3 →a.→p=→a.(→b×→c)[→a→b→c]=[→a→b→c][→a→b→c]=1 →b.→q=→b.(→c×→a)[→a→b→c]=[→a→b→c][→a→b→c]=1 →c.→r=→c.(→a×→b)[→a→b→c]=[→a→b→c][→a→b→c]=1 ∴→a.→p=→b.→q=→c.→r=1 consider →b.→p=→b.(→b×→c)[→a→b→c]=0 since →b.→b=0 →c.→q=→c.(→c×→a)[→a→b→c]=[→c→c→a][→a→b→c]=0 since →c.→c=0 →a.→r=→a.(→a×→b)[→a→b→c]=[→a→a→b][→a→b→c]=0 Since →a.→a=0 ∴→b.→p=→c.→q=→a.→r=0 ∴(→a+→b).→p+(→b+→c).→q+(→c+→a).→r=1+0+1+0+1+0=3