Let ∣∣→a∣∣=∣∣∣→b∣∣∣=∣∣→c∣∣=t
Since →a,→b,→c are mutually perpendicular.
So, →a⋅→b=→b⋅→c=→c⋅→a=0
∣∣∣→a+→b+→c∣∣∣2=∣∣→a∣∣2+∣∣∣→b∣∣∣2+∣∣→c∣∣2+2(→a⋅→b+→b⋅→c+→c⋅→a)
⇒∣∣∣→a+→b+→c∣∣∣2=3t2
⇒∣∣∣→a+→b+→c∣∣∣=√3t
Now,
cosθ=→a⋅(→a+→b+→c)∣∣→a∣∣∣∣∣→a+→b+→c∣∣∣=∣∣→a∣∣2∣∣→a∣∣(√3∣∣→a∣∣)=t2t2√3=1√3
So, 36cos22θ=36(2cos2θ−1)2
=36(23−1)2=36×19=4