Given: →a=ˆi+5ˆj+αˆk,→b=ˆi+3ˆj+βˆk
and →c=−ˆi+2ˆj−3ˆk
Now,
→b×→c=∣∣
∣
∣∣^i^j^k13β−12−3∣∣
∣
∣∣
⇒→b×→c=(−9−2β)ˆi+(3−β)ˆj+5ˆk
⇒|→b×→c|=(9+2β)2+(3−β)2+25
∴(9+2β)2+(3−β)2+25=5√3
⇒β2+6β+8=0
⇒β=−2,−4
Now, →a is perpendicular to →b
⇒→a⋅→b=0
⇒(ˆi+5ˆj+αˆk)⋅(ˆi+3ˆj+βˆk)=0
⇒1+15+αβ=0
⇒α=−16β
Now,
|→a|2=1+25+α2
⇒|→a|2=26+(−16β)2
⇒|→a|2=26+256β2
⇒|→a|2max=26+2564
⇒|→a|2max=26+64
⇒|→a|2max=90