Let →c be a unit vector which is coplanar with →a=^i−^j+2^k and →b=2^i−^j+^k such that →c is perpendicular to →a. If P be the length projection of →c along →b, then the value of 11P2 is
Open in App
Solution
Let →c=x→a+y→b ⇒→c=^i(x+2y)+^j(−x−y)+^k(2x+y) Now, →c.→a=0⇒x+2y+x+y+4x+2y=0⇒y=−6x5 →c=−7x5^i+x5^j+4x5^k We know that, |→c|=1⇒49x2+x2+16x225=1⇒x2=2566⇒→c=±5√66(−75^i+15^j+45^k) The perpendicular distance will be, P=→c⋅→b|→b|=√116⇒11P2=36