Let →c=x^i+y^j+z^k is the external angle bisector between two vectors →a=2^i−^j+3^k and →b=^i+2^j−3^k,|→c|=3√46. Then x+y+z=
Open in App
Solution
Given vectors, →a=2^i−^j+3^k and →b=^i+2^j−3^k,
external angle bisector is λ(^a−^b) →c=λ(2^i−^j+3^k√14−^i+2^j−3^k√14)=λ√14(^i−3^j+6^k)⇒|→c|=√46λ√14=3√46⇒λ=3√14⇒→c=3^i−9^j+18^k∴x+y+z=3−9+18=12