The correct option is A R
→p1⋅→p2=|→p1||→p2|cosθ
For angle to be obtuse cosθ<0
As |→p1|>0, |→p2|>0, so
→p1⋅→p2<0⇒(6x^i+2m^j−^k)⋅(−m2x^i+3x^j+2^k)<0⇒−6m2x2+6mx−2<0⇒3m2x2−3mx+1>0
Here,
3m2>0⇒m∈R−{0}⋯(1)D<0⇒9m2−12m2<0⇒m2>0⇒m∈R−{0}⋯(2)
From equation (1) and (2), we get
m∈R−{0}
When m=0, we get
0−0+1>0
Which is true
Hence, m∈R