Let →p,→q,→r be three mutually perpendicular vectors of same magnitude.If a vector →x satisfies the equation →p×((→x−→q)×→p)+→q×((→x−→r)×→q)+→r×((→x−→p)×→r)=0 then →x=
A
12(→p+→q−2→r)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
12(→p+→q+→r)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
13(→p+→q+→r)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
13(2→p+→q−→r)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B12(→p+→q+→r) →p=p^i,→q=p^j,→r=p^k →p×((→x−→q)×→p)+→q×((→x−→r)×→q)+→r×((→x−→p)×→r)=0 ⇒∑→p×((→x−→q)×→p)+→q× ⇒∑p^i×((→x−p^j)×p^i)+p^j =∑p2[^i.^i(→x−p^j)−^i→x^i]=0 =∑[→x−p^j−(^i.→x)^i]=0 =3→x−p(^i+^j+^k)−→x=0 ∴→x=p2(^i+^j+^k) =12(→p^i+→p^j+→p^k) =12(→p+→q+→r)