Let →r×→a=→b×→a and →r⋅→c=0 where →a⋅→c≠0 then find the value of (→a⋅→c)(→r×→b)+(→a×→r)
A
c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
(→a⋅→b)c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
(→a×→b)×→c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is C0 Given (→r−→b)×→a=0 ⇒→r−→b and →a are parallel. ∴→r−→b=t→a or ∴→r=→b+t→a..................(1) or ∴→r⋅→c=(→b⋅→c)+t(→a⋅→c) or ∴0=(→b⋅→c)+t(→a⋅→c)∴t=−(→b⋅→c)(→a⋅→c)...............(2)
Hence from (1) and (2), putting for t →r=→b−→b⋅→c→a⋅→c→a ∴(→r×→b)=(→b×→b)−→b⋅→c→a⋅→c(→a×→b) ∴(→a⋅→c)(→r×→b)+(→b⋅→c)(→a×→b)=0