The correct option is C 1
Given: →u×→v+→u=→w⋯(i) and →w×→u=→v⋯(ii)
Multiplying equation (i) by →u
(→u×→v+→u)×→u=→w×→u
(→u×→v×→u)+→u×→u=→v From (ii)
(→u×→v×→u)+0=→v
(→u.→u)→v−(→u.→v)→u=→v
As →u is unit vector. So →u.→u=1
(1)→v−(→u.→v)→u=→v
(→u.→v)→u=0
Hence,
(→u.→v)=0⋯(iii)
Now, [→u →v →w]
⇒→u.(→v×→w)
⇒→u.(→v×(→u×→v+→u))
⇒→u.(→v×(→u×→v)+→v×→u)
⇒→u.((→v.→v)→u−(→v.→u)→v+→v×→u)
⇒→u.((1)→u−0+→v×→u)
⇒→u.→u+→u.(→v×→u)
⇒12+[→u →v →u]
⇒1+0=1