The correct options are
A 1−→v⋅→w
B 1−|→w|2
C |→w|2−(→u⋅→w)2
We have, →w+(→w×→u)=→v ...(1)
Taking dot product with →v, we get
(→w+(→w×→u))⋅→v=→v⋅→v
⇒→w⋅→v+[→u→v→w]=1 (∵|→v|=1)
⇒[→u→v→w]=1−→v⋅→w ...(2)
Now, taking cross product of eqn (1) with →u, we get
→u×→w+→u×(→w×→u)=→u×→v
⇒→u×→w+(→u⋅→u)→w−(→u⋅→w)→u=→u×→v
⇒→u×→w+→w−(→u⋅→w)→u=→u×→v (∵|→u|=1)
Taking dot product with →w, we get
→w⋅(→u×→w)+→w⋅→w−(→u⋅→w)(→w⋅→u)=→w⋅(→u×→v)
⇒|→w|2−(→u⋅→w)2=[→u→v→w]
Now, taking dot product of eqn (1) with →w, we get
→w⋅→w+→w⋅(→w×→u)=→w⋅→v
⇒|→w|2+0=→v⋅→w
⇒|→w|2=→v⋅→w
Substituting the value of →v⋅→w in eqn (2), we get
[→u→v→w]=1−|→w|2