[→u→v→w]=(→u×→v).(→v−(→w×→u)) =(→u×→v).(→u×→w) =∣∣
∣∣→u.→u→u.→w→v.→u→v.→w∣∣
∣∣
→w+(→w×→u)=→v
Taking dot product with →u
→u.→w=→u.→v
Taking dot product with →v
→v.→w=1−[→u→v→w]
Assuming the angle between →u and →v be θ
∴[→u→v→w]=∣∣∣1cosθcosθ1−[→u→v→w]∣∣∣⇒[→u→v→w]=1−[→u→v→w]−cos2θ⇒2[→u→v→w]=1−cos2θ
Hence the maximum value will be 1.