Let p,q,r,s be a−3d,a−d,a+d,a+3d respectively,
Thus, as per the first equation x2−2x+A=0
Sum of roots p+q=2
Therefore, 2a−4d=2
a−2d=1-------------(1)
For the other equation, x2−18x+B=0
r+s=18, 2a+4d=18
a+2d=9--------------(2)
On adding (1) and (2),
2a=10,a=5
d=2
Now, A=pq=(a−3d)(a−d)=−3
B=rs=(a+d)(a+3d)=7×11=77
B−A10=77−(−3)10
=8