The correct option is B c=−3 , d=77
Given, p and q be the roots of the equation x2−2x+c=0
p+q=2 and pq=c ....(1)
Given, r and s be the roots of the equation x2−18x+d=0
r+s=18 and rs=d ....(2)
Also, given p,q,r,s are in A.P.
Let the four terms in A.P. be a−3d,a−d,a+d,a+3d
⇒p=a−3d,q=a−d,r=a+d,s=a+3d
Put these values in (1) and (2), we get
2a−4d=2
2a+4d=18
⇒a=5,d=2
So, p=−1,q=3,r=7,s=11
Hence, c=pq=−3 and d=rs=77