Let L1:x−13=y+64=z+52 and L2:x−34=y−2−3=z+57
The plane contains the points
(1,−6,−5) and (1,−1,α)
Vector joining both points is
→V=5^j+(α+5)^k
So, →V⋅→n=0, where →n is normal vector to the plane
Now,
∣∣
∣∣05α+53424−37∣∣
∣∣=0⇒−5(13)+(α+5)(−25)=0⇒−13−25−5a=0⇒5a=−38∴|5a|=38