Let P be a plane passing through the points (1,0,1),(1,−2,1) and (0,1,−2). Let a vector →a=α^i+β^j+γ^k be such that →a is parallel to the plane P, perpendicular to (^i+2^j+3^k) and →a⋅(^i+^j+2^k)=2. Then (α−β+γ)2 equals
Open in App
Solution
Let →n be the normal vector of the given plane →n=∣∣
∣
∣∣^i^j^k0201−13∣∣
∣
∣∣=6^i−2^k=2(3^i−^k)
∵→a is perpendicular to →n and ^i+2^j+3^k,∴→a=λ∣∣
∣
∣∣^i^j^k30−1123∣∣
∣
∣∣=λ(2^i−10^j+6^k)
∵→a⋅(i+j+2k)=2∴λ(2−10+12)=2⇒λ=12
And →a=^i−5^j+3^k ⇒α=1,β=−5,γ=3
Now, (α−β+γ)2=(1+5+3)2=81