a=10,b=8 ∴c=√102−82=6 Any point P on the ellipse is P(10cosθ,8sinθ).
A=12(Base×height)⇒A=12(F1F2×PM)⇒A=12(2×6×8sinθ)⇒A=48sinθ For maximum value of A, θ=π2 and Amax=48
Let P be a variable point on the ellipse x2100+y264=1 with foci F1 and F2. If A is the area of triangle PF1F2, then the maximum possible value of A is
Let P be a variable point on the ellipse x2a2+y2b2=1 with foci F1 and F2. If A is the area of the ΔPF1F2, then the maximum value of A is