Let P be a variable point on the ellipse x2100+y264=1 with foci F1 and F2. If A is the area of triangle PF1F2, then the maximum possible value of A is
a=10,b=8
∴c=√102−82=6
Any point P on the ellipse is P(10cosθ,8sinθ).
A=12(Base×height)⇒A=12(F1F2×PM)⇒A=12(2×6×8sinθ)⇒A=48sinθ
For maximum value of A, θ=π2
and Amax=48