Let P be a variable point on the ellipse x225+y29=1. With foci F1 and F2. If A is the area of the triangle PF1F2. then the maximum value of A is
Open in App
Solution
Given ellipse is, x225+y29=1. ⇒a2=25,b2=9,∴e=√1−925=45 ⇒F1≡(−4,0),F2≡(4,0) Let any point on the ellipse is, P(5cosθ,3sinθ) Thus area of triangle is A=12|∣∣
∣∣5cosθ3sinθ1−401401∣∣
∣∣|=12sinθ We know maximum value of sinθ is 1. Hence Amax=12