The correct options are
A n if p is a multiple of n
D 0 if p is not a multiple of n
∵α is nth root of unity
∴αn=e2iπ=1
Case 1: p is a multiple of n.
Now let p=nk
1+αnk+(α2)nk+⋯(αn−1)nk
=1+(αn)k+(αn)2k+⋯+(αn)(n−1)k
=1+1+1+⋯+1(n times)=n (∵αn=1)
Case 2: p is not a multiple of n.
Let p=nλ+k,k=1,2,⋯,(n−1) [λ∈Z,n>1]
and αn=1
Thus 1+αp+(α2)p+⋯⋯+(αn−1)p is
=1+αnλ+k+(α2)nλ+k+⋯+(αn−1)nλ+k
=1+αnλ⋅αk+α2nλ⋅α2k+⋯+α(n−1)nλ⋅αk(n−1)
=1+αk+α2k+⋯+αk(n−1) [∵αn=1]
=αnk−1αk−1=1−1αk−1=0