Let P=⎡⎢⎣3−1−220α3−50⎤⎥⎦, where α∈R. Suppose Q=[qij] is a matrix such that PQ=kI, where k∈R,k≠0 and I the identity matrix of order 3. If q23=−k8 and det(Q)=k22, then:
A
α=0,k=8
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
4α−k+8=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
det(Padj(Q))=29
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
det(Qadj(P))=213
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct options are B4α−k+8=0 Cdet(Padj(Q))=29 Q=kP−1P−1=⎡⎢
⎢
⎢
⎢⎣5α10−α3α6−(3α+4)−10122⎤⎥
⎥
⎥
⎥⎦20+12αq23=−k8k(−3α−4)20+12α=−k8α=−1|Q|=k22|kP−1|=k22k3|P|=k22⇒k=4|P|=8⇒|Q|=8∴4α−k+8=0|P.adjQ|=|P||Q|2=23×26=29|Q.adjP|=|Q||P|2=29