Let P=⎡⎢⎣3−1−220α3−50⎤⎥⎦, where αϵR. Suppose Q=[qij] is a matrix such that PQ = kI, where kϵR,k≠0 and I is the identity matrix of order 3. If q23=−k8anddet(Q)=k22 then
A
α=0,k=8
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
4α−k+8=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
det(Padj(Q))=29
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
det(Qadj(P))=213
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct options are B4α−k+8=0 Cdet(Padj(Q))=29 Here, P=⎡⎢⎣3−1−220α3−50⎤⎥⎦ Now, |P|=3(5α)+1(−3α)−2(−10) =12α+20 . . . (i) ∴adj(P)=⎡⎢⎣5α3α−10−10612−α−(3α+4)2⎤⎥⎦T =⎡⎢⎣5α10−α3α6−3α−4−10122⎤⎥⎦ . . . (ii) A PQ = kI ⇒ |P||Q| = |kI| ⇒ |P||Q| =k3 ⇒|P|(k22)=k3[given,|Q|=k22] ⇒ |P| = 2k . . . (iii) ∵ PQ = ki ∴ Q =kp−1I =k.adjP|P|=k(adjP)2k [from Eq. (iii)] =adjP2=12⎡⎢⎣5α−10−α3α6−3α−4−10122⎤⎥⎦∴q23=−3α−42[given,q23=−k8] ⇒−(3α+4)2=−k8⇒(3α+4)×4=k ⇒12α+16=k . . . (iv) From Eq. (iii), |P| = 2k ⇒4α - k + 8 = - 4 - 4 + 8 = 0 ∴ Option (b) is correct. Now, |P adj (Q)| = |P||adj Q| =2k(k22)2=k52=2102=29 ∴ Option (c) is correct.