wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let P=⎢ ⎢cosπ9sinπ9sinπ9cosπ9⎥ ⎥ and α, β, γ be non-zero real numbers such that αP6+βP3+γI is the zero matrix. Then, (α2+β2+γ2)(αβ)(βγ)(γα) is

A
π
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
π2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is D 1
P=⎢ ⎢cosπ9sinπ9sinπ9cosπ9⎥ ⎥

P2=⎢ ⎢cosπ9sinπ9sinπ9cosπ9⎥ ⎥ ⎢ ⎢cosπ9sinπ9sinπ9cosπ9⎥ ⎥ =⎢ ⎢cos2π9sin2π92cosπ9sinπ92sinπ9cosπ9cos2π9sin2π9⎥ ⎥

=⎢ ⎢cos2π9sin2π9sin2π9cos2π9⎥ ⎥

On solving,

P3=P2.P=⎢ ⎢cos3π9sin3π9sin3π9cos3π9⎥ ⎥ =⎢ ⎢cosπ3sinπ3sinπ3cosπ3⎥ ⎥

by P6=⎢ ⎢cos6π9sin6π9sin6π9cos6π9⎥ ⎥=⎢ ⎢cos2π3sin2π3sin2π9cos2π9⎥ ⎥

Given, αp6+βp3+γI=0 matrix

αcos2π3+βcosπ3+γ=0αβ=2γ

and αsin2π3+βsinπ3=0α+β=0

On solving, 2α=2γα=γ
and β=α=γ

(α2+β2+γ2)(αβ)(βγ)(γα)=(α2+β2+γ2)0 =1
Option D

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon