The correct option is B P−Q=−1
Let
T(r)=50+rCr(2r−1)50Cr(50+r) =50+rCr50Cr(1−51−r50+r) =50+rCr50Cr−50+rCr50Cr(51−r50+r)
Now,
50+rCr50Cr(51−r50+r)=(50+r) 50+r−1Cr−1(r)×(50−r)!r!50!×(51−r50+r)=50+r−1Cr−11×(51−r)!(r−1)!50!=50+r−1Cr−150Cr−1
So,
T(r)=50+rCr50Cr−50+r−1Cr−150Cr−1⇒T(r)=V(r)−V(r−1),
where V(r)=50+rCr50Cr
Now sum of the given series,
P=50∑r=1T(r)
=V(50)−V(0)
=100C50−1
Q=50∑r=0(50Cr)2
We know that,
(1+x)50(x+1)50=(1+x)10050∑r=0 50Cr xr×50∑r=0 50Cr xn−r=100∑r=0 100Cr xr
Comparing the coefficient of x50,
50∑r=0( 50Cr)2= 100C50
Therefore,
⇒Q=100C50
Now,
R=100∑r=0(−1)r(100Cr)2
We know that,
(x+1)100(1−x)100=(1−x2)100100∑r=0 100Cr xn−r×100∑r=0(−1)r 100Cr xr=100∑r=0(−1)r 100Cr (x2)r
Comparing the coefficient of x100,
100∑r=0(−1)r(100Cr)2=(−1)50 100C50
∴R=100C50
Therefore,
P=100C50−1Q=100C50R=100C50