Let P≡(−6,0) and S≡x2−y2+16=0.Which of the following is/are true
Open in App
Solution
Given, S≡x2−y2+16=0⋯(i),P≡(−6,0)
Let Q(x1,y1) be the nearest point on S=0 from P
Differentiating (i) w.r.t ′x′,dydx=xy
Now, Slope of normal at Q= Slope of PQ ⇒−y1x1=y1x1+6 ⇒x1=−3{∵y1≠0} ⇒y21=25 ⇒y1=±5 ∴Q≡(−3,5) or (−3,−5) PQ=√34