LetP≡(α,β) be a point on the line 3x+2y+10=0 such that |PA−PB| is maximum and A≡(4,2) , B≡(2,4), then the value of |α|+|β| is equal to
Open in App
Solution
Given line, 3x+2y+10=0⋯(1)
Let L(x,y)=3x+2y+10 L(4,2)=26>0 L(2,4)=24>0 ∴A,B will lie on same side of L=0 |PA−PB| is maximum when P,A,B are collinear
So,P is the Intersection point of line L=0 and line AB
Equation of AB : y−2=2−44−2(x−4) ⇒x+y−6=0⋯(2)
Solving (1),(2) we get, P≡(−22,28) ∴|α|+|β|=50