Let Pk be a point on the curve y=sin2x, whose x coordinate is kn−1(k=1,2,3,...,n). If A is (−1,0), then limn→∞1nn∑k=1(APk)2=A−Bsin2, then the value of 3AB is
Open in App
Solution
limn→∞1nn∑k=1((kn)2+sin2(kn−1)) =∫10(x2+sin2(x−1))dx =x33+∫10sin2(1−x−1)dx =x23+x2−12sin2x2 =13+12−12sin22 =56−14sin2 ⇒A=56 and B=14 AB=103