Let P(3,2,6) be a point in space and Q be a point on the line →r=^i−^j+2^k+s(−3^i+^j+5^k). Then the value of s for which −−→PQ is parallel to the plane x−4y+3z=1
A
14
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
−14
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
18
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
−18
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A14 Position vector of P is 3^i+2^j+6^k −−→PQ=→r−(3^i+2^j+6^k) =(^i−^j+2^k)+s(−3^i+^j+5^k)−(3^i+2^j+6^k) =(−3s−2)^i+(s−3)^j+(5s−4)^k −−→PQ.(^i−4^j+3^k)=0 ⇒[−(3s+2)^i+(s−3)^j+(5s−4)^k].(^i−4^j+3^k)=0 ⇒−3s−2−4s+12+15s−12=0 ⇒8s−2=0 ⇒8s=2 ∴s=28=14