wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let P(sinθ,cosθ), where 0θ2π be a point and let OAB be a triangle with vertices (0,0),(32,0) and (0,32). Find θ if P lies inside the OAB.

Open in App
Solution

In ΔOAB

Given that ,point

(O)=(0,0)

A=(32,0)

B=(0,32)

And point P=(sinθ,cosθ)

Then equation of line AB is x32+y32=1

x+y=32 …… (1)

Now, point O and P

Line O

0+032<0

=32<0

Line.Psinθ+cosθ<32

Squaring both side and we get,

(sinθ+cosθ)2<(32)2

sin2θ+cos2θ+2sinθcosθ<32

1+2sinθcosθ<32

sin2θ<321

sin2θ<12

sin2θ<sinπ60θ2π

2θ(0,π6)(π2π6,π+π6)(3π2π6,2π)02θ4π

2θ(0,π6)(2π6,7π6)(4π3,2π)

θ(0,π12)(2π12,7π12)(4π12,2π2)

Hence, this is the answer.
1040752_1037525_ans_9dcf04721f4c45929e0a4cb905beecf6.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Adaptive Q9
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon