In ΔOAB
Given that ,point
(O)=(0,0)
A=(√32,0)
B=(0,√32)
And point P=(sinθ,cosθ)
Then equation of line AB is x√32+y√32=1
x+y=√32 …… (1)
Now, point O and P
Line O
0+0−√32<0
=−√32<0
Line.Psinθ+cosθ<√32
Squaring both side and we get,
(sinθ+cosθ)2<(√3√2)2
⇒sin2θ+cos2θ+2sinθcosθ<32
⇒1+2sinθcosθ<32
⇒sin2θ<32−1
⇒sin2θ<12
⇒sin2θ<sinπ60≤θ≤2π
⇒2θ∈(0,π6)∪(π2−π6,π+π6)∪(3π2−π6,2π)0≤2θ≤4π
⇒2θ∈(0,π6)∪(2π6,7π6)∪(4π3,2π)
⇒θ∈(0,π12)∪(2π12,7π12)∪(4π12,2π2)
Hence, this is the answer.