Let p, q be integers and let α, β be the roots of the equation x2–2x+3=0 where α≠β. For n=0, 1, 2,..., let an=pαn+qβn and a3=−10, then pq+qp=
2
Since, α and β are the roots of the equation, x2−2x+3=0,
so, α+β=2 and αβ=3
Also, α2−2α+3=0 and β2−2β+3=0
⇒α2=2α−3 and β2=2β−3
Given, an=pαn+qβn
So, a0=p+q
a1=pα+qβ
a2=pα2+qβ2
=p(2α−3)+q(2β−3)
=2(pα+qβ)−3(p+q)
=2a1−3a0
Similarly, a3=2a2−3a1
=2(2a1−3a0)−3a1
=a1−6a0
⇒−10=pα+qβ−6(p+q)
−10=pα+q(2−α)−6(p+q)
−10=α(p−q)+(−6p−4q)
⇒p=q; −10q=−10
⇒q=p=1
Thus, pq+qp=1+1=2