The correct option is C 12(p+q+r)
Let ∣∣→p∣∣=∣∣→q∣∣=∣∣→r∣∣=K. Let ^p,^q,^r be unit vectors along →p,→q,→r respectively.
Clearly ^p,^q,^r are mutually perpendicular vectors, so any vector →x can be written as a1^p+a2^q+a3^r.
→p×((→x−→q)×→p)=(→p.→p)(→x−→q)−(→p.(→x−→q))→p=K2(→x−→q)−(→p.→x)→p(→p.→q=0)=K2(→x−→q)−K^p.(a1^p+a2^q+a3^r)K^p=(→x−→q−a1^p)
Similarly →q×((→x−→r)×→q)=K2(→x−→r−a2^q) and →r×((→x−→p)×→r)=K2(→x−→p−a3^r)
According to the given condition
K2(→x−→q−a1^p+→x−→r−a2^q+→x−→r−a3^r)=0⇒K2(3→x−(→p+→q+→r)−(a1^p+a2^q+a3^r))=0⇒K2(2→x−(→p+→q+→r))=0⇒→x=12(→p+→q+→r)(∵K≠0)