Let p(x) be a function defined on R such that p’(x) = p’(1–x), for all x ϵ [0, 1], p(0) = 1 and p(1) = 41. Then ∫10p(x)dx equals
A
21
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
41
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
42
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
√41
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A 21 p′(x)=p′(1−x) ⇒p(x)=−p(1−x)+c Putx=0 p(0)=−p(1)+c ⇒c=42 I=∫10p(x)dx I=∫10p(1−x)dx 2I=∫10(p(x)+p(1−x))dx=∫10cdx=∫1042dx 2I=42⇒I=21