Let p(x)=ax4+bx3+cx2+dx+e
Now limx→0[1+p(x)x2]=2
⇒limx→0p(x)x2=1 ⋯(i)
⇒p(0)=0⇒e=0
Applying L 'Hospital's rule to eqn (1), we get
limx→0p′(x)2x=1⇒p′(0)=0
⇒d=0
Again applying 'Hospital's' rule, we get
limx→0p′′(x)2=1⇒p′′(0)=2
⇒2c=2orc=1
∴p(x)=ax4+bx3+x2
⇒p′(x)=4ax3+3bx2+2x
As p(x) has extremum at x = 1 and 2
∴p′(1)=0 and p′(2)=0
⇒4a+3b+2=0 ⋯(i)
⇒32a+12b+4=0 or 8a+3b+1=0 ⋯(ii)
Solving eq's (i) and (ii) we get a=14 and b=−1
∴p(x)=14x4−x3+x2
So, that p(2)=164−8+4=0