We have limx→0(P(x)x3−2)=4
∴limx→0P(x)x3=6
Consider P(x)=ax5+bx4+6x3
⇒P′(x)=5ax4+4bx3+18x2
Given P′(−1)=0⇒5a−4b=−18
and P′(1)=0⇒5a+4b=−18
On solving, we get
a=−185,b=0
Hence, P(x)=−185x5+6x3
P′(x)=−18x4+18x2=18(x2−x4)
and P′′(x)=18(2x−4x3)=36x(1−2x2)
Also, A={x:x2+6≤5x}
⇒x∈[2,3]
Clearly, P′′(x)<0 ∀ x∈[2,3]
So, y=P′(x) is decreasing function in [2,3]
∴M=P′max(x=2)=18(4−16)=−18×12
and m=P′min(x=3)=18(9−81)=−18×72
Hence, mM=−18×72−18×12=6