The correct option is B 102
Given : p(x3)=x2p(x2) and p(0)=−3, p′(13)=0, p(1)=2
Let p(x) be a polynomial of degree n.
p(x3)=x2p(x2)⇒3n=2+2n
⇒n=2
So, assuming p(x)=ax2+bx+c
Using p(0)=−3, we get
c=−3
Using p′(13)=0,
p′(x)=2ax+b⇒2a3+b=0 ⋯(1)
Using p(1)=2,
a+b−3=2
⇒a+b=5 ⋯(2)
Solving equations (1) and (2), we get
a=15 and b=−10
⇒p(x)=15x2−10x−3∴p(3)=102