Let p(x) be a real polynomial of least degree which has a local maximum at x=1 and a local minimum at x=3. if p(1)=6,p(3)=2, then p′(0) is
Open in App
Solution
p(x) have local maxima and minima at x=1 and x=3
So, p′=λ(x−1)(x−3)=λ(x2−4x+3) p(x)=λ(x3/3−2x2+3x)+μ p(1)=6 6=λ(13−2+3)+μ 18=4λ+3μ...(i) p(3)=2 2=λ(273−2×9+9)+μ ∴μ=2⇒λ=3 p′(x)=3(x−1)(x−3) p′(0)=3(−1)(−3) =9