The correct option is C p(–5)=0
p(x)=∣∣
∣
∣∣(2x+2−x)2(3x+3−x)2(5x+5−x)2(2x−2−x)2(3x−3−x)2(5x−5−x)2111∣∣
∣
∣∣
R1→R1–R2
p(x)=∣∣
∣
∣∣444(2x−2−x)2(3x−3−x)2(5x−5−x)2111∣∣
∣
∣∣
Hence p(x)=0 ∀x
Hencep(–5)=0
Now for q(x)=p(x)=0
q(x)=0
q(x)=∣∣
∣∣2x−23x−43x−5x−12x−32x−4x−1x−12x−4∣∣
∣∣R1→R1−R2−R3
q(x)=∣∣
∣∣003−xx−12x−32x−4(x−1)(x−1)(2x−4)∣∣
∣∣
q(x)=(3−x)[(x−1)2(x−1)(2x−3)]
=(3−x)(x−1)[x−1−2x+3]
=(x–1)(x–2)(x–3)
q(x)=0 for x=1,2,3.