The correct options are
A (−1,−2)
D (−5,−6)
Let the coordinates of P be (h,k)
Now, PA=PB
⇒PA2=PB2⇒(h+1)2+(k+6)2=(h+5)2+(k+2)2⇒2h+1+12k+36=10h+25+4k+4⇒−8h+8k+8=0⇒h=k+1
Now, the area of the △PAB
8=12∣∣∣x1x2x3x1y1y2y3y1∣∣∣⇒16=∣∣∣k+1−1−5k+1k−6−2k∣∣∣⇒16=|(−6k−6+k)+(2−30)+(−5k+2k+2)|⇒16=|−8k−32|⇒|−k−4|=2⇒−k−4=±2⇒−k=4±2⇒−k=2,6∴k=−2,−6∴h=−1,−5
Hence, the coordinates of P are (−1,−2) and (−5,−6)