Let ϕ be an arbitrary smooth real valued scalar function and →V be an arbitrary smooth vector valued function in a three-dimensional space. Which one of the following is an identify?
A
curl(ϕ→V)=▽(ϕDiv→V)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
Div→V=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
Div(Curl→V)=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
Div(ϕ→V)=ϕDiv→V
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is CDiv(Curl→V)=0 →V=V1^i+V2^j+V3^k Curl→V=∣∣
∣
∣
∣∣^i^j^k∂∂x∂∂y∂∂zV1V2V3∣∣
∣
∣
∣∣ =^i(∂V3∂y−∂V2∂z)−^j(∂V3∂x−∂V1∂z)+^k(∂V2∂x−∂V1∂y) Div(Curl→V) =∂∂x(∂V3∂y−∂V2∂z)−∂∂y(∂V3∂x−∂V1∂z)+∂∂z(∂V2∂x−∂V1∂y) =∂2V3∂x∂y−∂2V2∂x.∂z−∂2V3∂y.∂x+∂2V1∂y∂z+∂2V2∂z.∂x−∂2V1∂z.∂y =0
Alternative Solution: Div(Curl→V)=▽.(▽×→V)=0 (obvious result using vector identities) (∵▽×→V is perpendicular to the plane of ▽ and →V)