Let ϕ(x)=(x−b)(x−c)(a−b)(a−c)f(a)+(x−c)(x−a)(b−c)(b−a)f(b)+(x−a)(x−b)(c−a)(c−b)f(c)−f(x) Where a < c < b and f11(x) exists at all points in (a,b) . Then, there exists a real number μ a < μ < b such that f(a)(a−b)(a−c)+f(b)(b−c)(b−a)+f(c)(c−a)(c−b)=
Apply Rolle's Theorem, twice, we get required value