wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let PM be the perpendicular from the point P(1,2,3) to xy plane. If OP makes an angle θ with the positive direction of z axis and OM makes an angle ϕ with the positive direction of x axis, where O is the origin, then

A
tanϕ=2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
9tan2θ+tanϕ=7
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
Length of OM=5
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
tanϕ=5
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C Length of OM=5
We know that,
r=11+22+32=14
OM=rsinθ3=rcosθcosθ=314
OM=14×514=5
1=rsinθcosϕ(1)2=rsinθsinϕ(2)tanϕ=2
9tan2θ+tanϕ=9×(53)2+29tan2θ+tanϕ=7

Alternate Solution:
Any point (x,y,z) in 3D plane can be represented as
x=rsinθcosϕ
y=rsinθsinϕ
z=rcosθ
For point P(1,2,3),
1=rsinθcosϕ ...(1)
2=rsinθsinϕ ...(2)
3=rcosθ ...(3)
(2)÷(1)
tanϕ=2
Squaring and adding eqn (1) and (2)
5=r2sin2θ
rsinθ=5=OM (θ is +ve)

rsinθrcosθ=53 from eqn (3)
tanθ=53
9tan2θ+tanϕ=9×(53)2+29tan2θ+tanϕ=7

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Ellipse and Terminologies
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon