Let PM be the perpendicular from the point P(1,2,3) to x−y plane. If OP makes an angle θ with the positive direction of z− axis and OM makes an angle ϕ with the positive direction of x− axis, where O is the origin, then
A
tanϕ=2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
9tan2θ+tanϕ=7
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
Length of OM=√5
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
tanϕ=√5
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C Length of OM=√5 We know that, r=√11+22+32=√14 OM=rsinθ3=rcosθ⇒cosθ=3√14 ∴OM=√14×√514=√5 1=rsinθcosϕ⋯(1)2=rsinθsinϕ⋯(2)⇒tanϕ=2 9tan2θ+tanϕ=9×(√53)2+2⇒9tan2θ+tanϕ=7
Alternate Solution:
Any point (x,y,z) in 3D plane can be represented as x=rsinθcosϕ y=rsinθsinϕ z=rcosθ
For point P(1,2,3), 1=rsinθcosϕ...(1) 2=rsinθsinϕ...(2) 3=rcosθ...(3) (2)÷(1) tanϕ=2
Squaring and adding eqn (1) and (2) 5=r2sin2θ ⇒rsinθ=√5=OM(∵θis +ve)
rsinθrcosθ=√53 from eqn (3) ⇒tanθ=√53 9tan2θ+tanϕ=9×(√53)2+2⇒9tan2θ+tanϕ=7