Given : P lies on line →r=5^i+7^j−2^k+s(3^i−^j+^k) and point Q lies on the line →r=−3^i+3^j+6^k+t(−3^i+2^j+4^k).
−−→PQ=−−→OQ−−−→OP=−8^i−4^j+8^k+t(−3^i+2^j+4^k)−s(3^i−^j+^k)
As, −−→PQ is parallel to 2^i+7^j−5^k, Let −−→PQ=λ(2^i+7^j−5^k)
∴2λ=−8−3t−3s⋯(i)7λ=−4+2t+s⋯(ii)−5λ=8+4t−s⋯(iii)
Solving, (i),(ii),(iii): we get
λ=t=s=−1
So, −−→PQ=−2^i−7^j+5^k
∴|−−→PQ|2=78